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Abstract

We have investigated a Monte-Carlo treatment of particle-growth by evaporation–condensation based on a combination of a two-state
Potts, or Ising, model with the Metropolis algorithm for the acceptance/rejection of simulated growth steps. The effects of initial size-
distribution and lattice occupancy on particle-growth through Ostwald ripening via evaporation–condensation have been explored and the
sensitivity of the results to model-parameters, such as interaction energy, temperature and second-nearest-neighbour weightings has been
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From an initial random distribution of particles, the predicted growth follows a square root dependence on time, consistent

nown analytical treatments. When the temperature parameter was examined, a critical temperatureTc was found. BelowTc the rate o
article-growth increased with increasingT; but aboveTc the growth-rate decreased with increase inT. The correspondence, in the abse
f second-nearest-neighbour interactions, of the computedTc with the analytically determined value demonstrates the robustness
rocedures.
The effects of evaporation–condensation on the size-distribution, characterized by a mean size〈R〉 and r.m.s. deviationδ, have receive

articular consideration. It is predicted that, for three different initial particle size distributions, with the same initial mean size, g
vaporation–condensation will lead to convergence of the normalizedδ/〈R〉 versus time orδ/〈R〉 versus〈R〉 curves. Counter-intuitively,
arrow initial size-distribution is not maintained by particles growing by evaporation–condensation.
Finally, we have developed a simple technique for incorporating diffusive phenomena into this model by incorporating dis

endence into the probability of migration. This has reduced the necessary computational time and enabled us to compa
endence of theδ/〈R〉 versus〈R〉 relationship for different values of the characteristic distance. Remarkably and somewhat un
dly, we find that for a wide range of model-parameters the normalized deviation is effectively independent of this char
istance.
2004 Elsevier Ltd. All rights reserved.
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. Introduction

Gas-phase production of nano-particulate powders offers
any attractions. The necessary volatile starting materials,
.g. metal halides, are often available and the feasibility of

arge-scale manufacture is amply demonstrated by the oxida-

∗ Corresponding author. Tel.: +44 191 222 5618; fax: +44 191 222 6929.
E-mail address: T.A.Egerton@ncl.ac.uk (T.A. Egerton).

tion of titanium tetrachloride vapour

TiCl4 + O2 → TiO2 + 2Cl2

to produce annually 2–3 million tonnes of titanium diox
particles (∼100 nm radius; 7 m2 g−1).1 An analogous proce
for the production of nano-particulate ZrO2 has been demo
strated at pilot-plant scale.2 Nano-particles of alumin
silica and titania (surface area 50–150 m2 g−1) are produce
commercially by flame hydrolysis of their respect
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chlorides,3 e.g.

SiCl4 + 2H2 + O2 → SiO2 + 4HCl

Gas phase processes have been developed for titanium
boride,4 titanium nitride5 and silicon carbide.6 All of them
offer attractive routes to production of fine particles.

In order to control mean particle-size and size-distribution
it is important to understand the mechanisms by which such
particles grow. Initially, particle-growth in gas-phase reac-
tors depends on the balance between nucleation and growth
by surface reaction. However, once the reactants have been
consumed, further growth may occur by the aggregation
and subsequent sintering of flocculated parents or by Ost-
wald ripening—in which evaporation and condensation cause
small particles to disappear and larger particles to grow as a
result of the greater relative surface energy of the smaller
particles—a consequence of their greater specific surface
area. Although, the gas phase production of oxide nano-
particles can occur at temperatures close to or above the
melting point of the bulk oxides2,7 little attention has been
paid to this particular cause of particle-growth—mainly be-
cause of the experimental difficulties inherent in differentiat-
ing ripening by evaporation–condensation from aggregation
and sintering. Computational modelling provides a method
of unravelling the effects of the many growth mechanisms,
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surface site is accepted if there is a resultant decrease in sur-
face energy. If an increase in surface energy results, the move
is accepted with a probability given by a Boltzmann factor
(Metropolis algorithm10). As a result, the larger clusters grow
at the expense of smaller ones.

The variables in the analysis include the fractional occu-
pancy of the sites, the nearest neighbour interaction strength
J and simulation temperatureT (combined within the
dimensionless parameterkBT/J, wherekB is the Boltzmann
constant), the relative strength of next nearest neighbour
interactions and a characteristic distance associated with
those accepted exchanges which lower the surface energy.

Specifically, moves which lower the surface energy may
be assessed in terms of the separation between the two sites
involved, to which a characteristic radius may be applied. If
the separation between these sites is less than this character-
istic radius, the move is accepted; otherwise it is accepted or
rejected on the basis of comparison with a random number.
This constraint on the phase space has the effect of incorpo-
rating a diffusion distance into the model, i.e. it allows for
evaporation–condensation being more probable over short
distances than long distances.

1.1. Background

The Potts model10,11which treats the evolution of a non-
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hich contribute to each of the main routes and this p
resents a first step in building such a model.

Although the above paragraphs emphasize growth d
owder production, evaporation–condensation plays a p
any other particle-growth processes, including calcina
f small particles and the growth of crystals in solution
pecific example of the former is the growth of silver parti
upported on TiO2.8 More generally, the sintering of me
rystallites on catalyst supports is significantly enhance
mall amounts of chlorine which promote mass transpor
ween particles via volatile chlorides.

In general, the time dependence of the mean grain ra
R〉, may often be described analytically9 by the relation

R〉n = Rn
0 + kt (1)

hereR0 represents the mean grain-radius att = 0, k is a
onstant (with Arrhenius temperature dependence) ann is
he order of grain growth. The value ofn depends on th
rowth mechanism and is generally taken to be 2 for tra
cross a boundary and 3 for diffusion in the bulk.

In order to extend studies of grain growth beyond the li
f analytical approximations, numerical methods are ne
ary. In this paper, the evaporation–condensation med
ipening process is studied by Monte-Carlo simulation
two-dimensional lattice. A two-state (lattice gas or Is
odel is adopted, corresponding to a specified occupan

lled and empty sites. The simulation proceeds in a stoc
ic manner, generating a sequence of configurations of la
tates. Trial states are generated from an initial, normally
om, distribution and an exchange between a filled and e
quilibrium discrete ensemble populating a regular la
as first proposed as a generalization of the Ising m

or simulating the critical transitions in magnetic mater
nd gas–liquid phase transitions in a lattice gas with m

han two degenerate states.10 It has been used in conjuncti
ith the Monte-Carlo method to simulate grain growth
volution of microstructures during sintering, melting, ph
ransitions, laser ablation and micromachining.10,12

Anderson and co-workers developed a 2D simulatio
rain growth and examined the growth kinetics, topology,

ocal dynamics.13–15Tikare et al.16,17simulated microstruc
ural evolution and size-distribution during solid state sin
ng. They found that grain growth kinetics were descri
y a power law withn = 2. In these simulation procedur

he spin state populations are not conserved—a lattice
s selected at random, its state is changed to one of its
st neighbours’ states, and the change is accepted or re
epending on the outcome of the standard Metropolis p
ure. Tikare et al.16,17also simulated pore migration (surfa
iffusion) in solid-state sintering using conserved dynam
o that the total number of pore sites and grain sites rem
onstant. A pore site was first selected and a neighbo
rain site was chosen. The two sites were temporally
hanged, with the grain site assuming a new state. The
tandard Metropolis algorithm was again used to acce
eject the move.

Matsubara and co-workers have studied micros
ures18,19 formed by liquid-phase sintering and simula
he microstructure development20 and compared the resu
f these simulations with experimental grain growth in A
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based ceramics.21,22Tikare and co-workers have also imple-
mented the Monte-Carlo method to simulate microstructural
evolution, size-distribution, grain growth and Ostwald ripen-
ing in liquid-phase sintered materials.23–25They found grain
growth kinetics followed a power law with asymptotic ex-
ponent,n ∼= 3 for different fractions of liquid-phase volume
in liquid-phase sintering.23,24For cases in which long range
diffusion is involved26,27 (solid–liquid sintering, AB alloy
sintering) a site and its neighbour are selected at random.
If they belong to different phases, they are allowed to ex-
change their spins. This can create an isolated spin of phase
B, which can randomly walk through the matrix of phase A
until it reaches another grain of phase B. The probability is
then compared with a random number. Using procedures of
this type, Zhang et al.27 found that the liquid-phase hinders
the motion of the grain boundary, and the rate of grain growth
in the two-phase case is slower than that in the single phase.

Liu et al.28,29 studied grain growth and grain boundary
segregation in binary alloys. The Ising lattice was used to
realize the solute diffusion event via spin exchange and
the Potts model was applied to simulate a domain growth
event via spin adjustment. Dudek et al.30 employed Q solid-
phase states and a single pore state to simulate late stage
sintering in metal powders. They found that for the non-
conserved system with low porosity, the kinetics of metal
g -
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bitrary unit of energy to the system. First and second-nearest
neighbours are defined as cells with a common side and com-
mon corner, respectively. The total surface energy is

E = J

N0∑
i

8∑
j

[1 − δ(qi, qj)] (2)

whereδ is the Kronecker delta function such thatδ(qi,qj) = 1
if qi = qj and δ(qi,qj) = 0 if qi �= qj, whereqi is the state of
the grain or empty-site at sitei, andqj is the state of the first-
nearest and second-nearest neighbours at sitej. The contribu-
tion of neighbours to the surface energy can be varied through
the first-nearest and second-nearest neighbour weightings (wf
andws). Eq.(1) then becomes

E = J

N0∑
i

4∑
j

[1 − δ(qi, qj)]wf

+J

N0∑
i

4∑
j

[1 − δ(qi, qj)]ws (3)

Throughout the simulationswf was taken as 1, whilstws was
allowed to vary between 0 and 1.

In our simulations, the two steps in Ostwald ripening,
evaporation–condensation and transport between grains, are
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p the
fi ell is
fi tate
i
f the
c
a g
E

�

( eter-
m ansi-
t

w de-
g ber
R
e ation
i iated
w for
t tem-
p
0 hys-
i
i tting
T tes
rain growth followed a power law withn = 2. The pores in
ide the bulk grain dissolved according to the Lifshitz
lyozov31 evaporation–condensation mechanism. For d
ystems, a power law withn = 3 was observed.

. Description of the model

In this paper, we use an Ising (or two-state Potts) mod
imulate grain growth processes such as the growth of a s
hase solid at the tail end of a gas phase reaction when

s no further reaction between the solid and gas phas3,7

he choice of a two-state model may be justified by the
hat, for TiO2 prepared by gas phase oxidation, each par
ormally consists of only one crystallite, as evidenced by
lose correspondence between particle-sizes measure
ransmission electron micrographs and crystal-sizes c
ated from X-ray line broadening. The two-dimensional s
lation domain is discretized as a 400× 400 square lattic
ith periodic boundary conditions. The lattice-occupancf)

s defined as the ratio of the number of occupied lattice
N0) to the total number of lattice sites (N). We assume a si
le spin state in the solid phase, with spin state (q) = +1, and
ne in the surrounding inert gas phase with (q) =−1. Adja-
ent cells with spin state +1 form a grain, within which th
re no boundaries. Adjacent lattice sites with a spin sta
1 form free space in which entities can diffuse from
rain to another. The driving force for grain growth is the
uction of surface energy associated with interface betw
ccupied and empty cells.

The energy under consideration is the surface en
hereby all unlike first-nearest neighbours contribute on
imulated independently based on (1) an energy-depe
robability and (2) a distance-dependent probability. In
rst case, (a) the state of a randomly chosen surface c
rst checked; then a new surface site with different s
s selected, and the total system energy (Ei ) is calculated
rom Eq. (3), (b) state-spin exchange is performed for
hosen sites and the total system energy (Ef ) calculated
nd (c) the difference in energy,�E, is calculated usin
q. (4).

E = Ef − Ei (4)

d) The standard Metropolis algorithm is then used to d
ine whether the exchange is accepted or rejected. A tr

ion probabilityp(�E) is evaluated using

p(�E) = exp
(

−�E
kBT

)
(for �E > 0)

p(�E) = 1 (for�E ≤ 0)

hereT is the simulation temperature, which defines the
ree of thermal fluctuation in the system. A random num
between 0 and 1 is generated such that ifR ≤ p (�E), the

xchange is accepted; otherwise, the original configur
s restored. This permits even some of the jumps assoc
ith a positive energy change to be accepted; it allows

he distribution of energies associated with a specified
erature. The dimensionless parameterkBT/J is varied from
to 2.0. Note that the simulation temperature is not a p

cal temperature, so that the effect of increasingT is not to
ncrease the ‘evaporation’ frequency. Consequently, se
= 0 does not eliminate crystal growth; it simply elimina
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thermal fluctuations and ensures the rejection of all steps for
which�E > 0.

For each jump that is successful on the basis of this first
criterion a second criterion-based on a distance-dependent
probability (pd)—may be applied. This may be defined as

pd(d, dL) =
{

1 (d ≤ dL)

f (d, dL) (d > dL)
(5)

whered is the distance between the occupied lattice site (x1,
y1) and the empty lattice site (x2,y2) to which the monomer
moves, such that

d =
√

(x2 − x1)2 + (y2 − y1)2 (6)

dL, the characteristic distance within which any exchanges
which lower the energy are accepted with unit probability, is
given by

dL = dmax

2m
(7)

wherem is a positive number (≥1). The maximum possible
diffusion distancedmax is dictated by the dimensionsX andY
of the simulation matrix and a factor of 1/2 in Eq.(7) arises
from the use of periodic boundary conditions.

d
√

2 2

In the simplest case, the functionf(d,dL) is 0, such that
pd(d,dL) is a step function, but the effect of other smoothly
varying functions will also be explored.

If d is less than or equal todL the move is accepted. Ifd is
greater thandL, a random numberR between 0 and 1 is drawn,
and a move for whichpd(d,dL) < R is accepted; otherwise the
move is rejected. Thus, unlike the case of two-phase sintering
explored by Tikare et al.,26 where bulk diffusion was treated
by a random walk procedure, we have used a fast algorithm
by avoiding attempting unsuccessful moves. We consider this
procedure to be acceptable because in our simulations, in
contrast to those of Tikare et al.,26 the occupancy is very low.
For the formation of one mole of TiO2 from TiCl4, one mole
of solid TiO2 (∼20 cm3) coexists with two moles of chlorine
gas (∼40 dm3).

Time (t) in the simulation is measured in units of Monte-
Carlo Steps (MCS) such that 1 MCS corresponds toN at-
tempted exchanges, whereN is the total number of lattice
sites in the system. During the simulation, the mean grain
size〈R〉 and r.m.s. deviationδ were recorded, where

〈R〉 =
∑

k nkRk∑
k nk

δ2 =
∑

k nkR
2
k∑

n
− 〈R〉2 ≡ 〈R2〉 − 〈R〉2 (9)

F
f

max = X + Y (8)
ig. 1. ‘Snapshots’ corresponding to an initial random distribution, at 0 Monte
or occupanciesf = 25%,ws = 0.5 andkBT/J = 0. The mean size, the normalized
k k
-Carlo Steps, and the subsequent growth of particle size, at 50,100 and 200 MCS,
deviation, and the number of MCS are shown below each representation.



F. Qiu et al. / Journal of the European Ceramic Society 26 (2006) 37–47 41

Here, the sum is over all grains, wherenk is the number of
grains of sizeRk.

In the following, all quoted results reflect the average of
five runs; ‘snapshots’ of grain growth are recorded from a
typical run in the set.

3. Results and discussion

3.1. Grain growth without distance dependence

The effects of a range of parameters on grain growth
were first examined for the case in which the monomer may
diffuse (jump) through the whole simulation matrix (m = 1).
Fig. 1 shows ‘snapshots’ of the growth during a simulation
for an initially random distribution of grains with a lattice
occupancy of 25%. The filled cells represent grains. The
value ofkBT/J was chosen as 0, implying that any move with

�E > 0 will be rejected, and for this simulationws/wf = 0.5.
At t = 0, the mean size (〈R〉) is 0.74 and normalized deviation
(δ/〈R〉) = 0.37. As the simulation progresses, some grains
grow at the expense of other grains. After 200 MCS,
few small grains remain and many large grains, with a
mean size of 8.5 and normalized deviation of 0.49, are
seen.

Fig. 2demonstrates the effects of grid occupancy, second-
neighbour weighting, temperature and initial size/size-
distribution on the particle-growth. As expected the mean
size increases with MCS in all cases.Fig. 2a shows that as
the occupancy is increased the ‘growth-rate’ increases. This
effect persists even if the effect of largerR0 at higher oc-
cupancy is compensated for by plotting〈R〉/R0 instead of
〈R〉 against MCS. The larger fluctuations for MCS > 150 and
f = 40% may be due to coalescence when two or more parti-
cles of the decreasing number population come together to
form one large particle. For long simulations, when〈R〉 
 R0

F
l
o
i

ig. 2. (a) Mean size vs. time (MCS) for occupancies between 10 and 40%
ogarithmic scale to demonstrate the similarity to the behaviour expected from
ccupancy,f = 25% andkBT/J = 1.0). (d) The mean size at 50, 100, and 150 MC

s clearly seen.
(in all casesws/wf = 0.5 andkBT/J = 1.0). (b) The results from (a) plotted on a
a power law. (c) Mean size vs. MCS for values ofws from 0 to 1 (in all cases the

S as a function of (kBT/J) for ws/wf = 0.5. The discontinuity at (kBT/J) ≈ 0.67
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Eq.(1) can be rewritten as

〈R〉n = kt

or

log〈R〉 = 1

n
logk + 1

n
logt (10)

Fig. 2b displays the curves fromFig. 2a, on a logarithmic
scale and demonstrates (except at the early stage of growth)
approximate linearity with slopes of 0.43–0.49 for occupan-
cies of 10–40%. The deviation from linearity at less than 10
MCS has been noted previously26,32 and was attributed to
the effect of the initial disorderly lattice structure and ne-
glect of the initial grain radiusR0. Within statistical error, the
slopes are in good agreement with the power law prediction
1/n = 0.5, and confirm the essential robustness of the model.

Fig. 2c shows that mean size increases as second-nearest
neighbour weighting increases from 0 to 0.5 and, more
slowly, from 0.5 to 1.0. This general trend is intuitively rea-

sonable because an increase inws will—through its link to
�E—increase the relative likelihood of moves from small to
large, rather than from large to large, particles. Hence it will
increase the growth rate.

Fig. 2d shows the effect on〈R〉 of varying T (via kBT/J
at constantJ). It is clear the change in growth rate withT
is not monotonic, as would be expected in an experimental
study at increasing temperatures, but has a turning point at
kBTc/J ≈ 0.61. On closer examination of this turning point at
longer simulation times (MCS), a discontinuity in gradient
of the curve of〈R〉 againstT at a critical value of temperature
(Tc) is observed. This is analogous to an order–disorder phase
change, such as that observed in the variation of heat capacity
with temperature within the Ising model.

At temperatures below the critical temperature, where
〈R〉 is observed to increase slightly with increasingT, the
energetically favoured increase in grain size is being off-
set to an increasing extent by the probability of accepting
moves which result in an energy increase. At temperatures

F
(
b
t

ig. 3. Normalized deviations as a function of: (a) number of MCS and (b–d)
MCS) for occupancies between 10 and 40% (in all casesws/wf = 0.5 andkBT/J =
etween 10 and 40%.(In all casesws/wf = 0.5 andkBT/J = 1.0). (c) Normalized d

he occupancy,f = 25% andkBT/J = 1.0). (d) Normalized deviation as a function
mean size for the cases in Fig. 2. (a) Normalized deviation as a function of time
1.0). (b) Normalized deviation as a function of mean size for occupancies
eviation as a function of mean size for values ofws from 0 to 1 (in all cases
of mean size for (kBT/J) from 0 to 2.
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above the critical temperature, where〈R〉 is observed to de-
crease rapidly with increasingT, the increasing probability
of accepting positive energy moves dominates those which
result in a lower energy, leading to the break-up of larger
grains.

We have also expressed the results ofFig. 2c in logarithmic
form, as forFig. 2a. Some representative slopes derived from
these plots are listed inTable 1.

Table 1
The slopes derived from particle-growth curves (log〈R〉 = a + b × log t) for
different second-nearest-neighbour weighting,ws, temperature,kBT/J and
occupancy,f

ws
a Slope,ba kBT/Jb Slope,bb fc (%) Slope,bb

0 0.36 0 0.39 10 0.43
0.25 0.43 0.5 0.42 20 0.44
0.5 0.44 0.75 0.44 25 0.44
0.75 0.46 1 0.43 40 0.49
1.0 0.46 1.5 0.37

2 0.25
a f = 25,kBT/J = 1.
b ws = 0.5,f = 25.
c ws = 0.5,kBT/J = 1.

The figures inTable 1 confirm the trend indicated in
Fig. 2c, namely that the particle-growth-rate increases as
second-nearest neighbour weighting increases, and this trend
become less pronounced whenws exceeds 0.75. The inclu-
sion of second-nearest neighbour weightings will on average
promote growth by reducing the value of�E, and hence lead
to �E < 0, for a move to a large crystal.

Table 1also shows that for a fixed value ofws the particle-
growth exponent increases with increasing temperature over
a range of temperatures, reaches a peak, and decreases with
further increasing in temperature. Hence, it supports the
conclusion drawn fromFig. 2d that a critical temperature
kBTc/J ≈ 0.67 exists. For the case ofws = 0, with other
conditions as before, we obtain a critical temperature of
kBTc/J ≈ 0.57 comparable with the value of 0.567 predicted
by the lattice gas model.33 This again shows that our
computational procedures are robust.

For some applications of advanced powders a narrow
spread of particle sizes is highly desirable. We have, there-
fore, calculated the standard deviation of the size and nor-
malized this by dividing by the corresponding value of the
mean size.Fig. 3a shows that, asf is increased from 10 to
40%, the normalized deviation,δ/〈R〉, first increases with

F
1

ig. 4. Snapshots at four different times (0, 10, 50 and 200 MCS) for a fixe
0× 10, 8× 8 and 6× 6 of 0.1% each and (c) 10× 10 and 6× 6 of 0.15% each.
d initial mean size 4.51 and total occupancy of 20% (a) 8× 8 of 0.3125%, (b)
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time (MCS) to a peak value and then gradually decreases
to a plateau,Fig. 3a. Normalized deviation, for conditions
corresponding toFig. 2c is shown as a function of mean size
in Fig. 3b–d.

Although exceptions to the general pattern occur when
ws = 0 (Fig. 3c for which kBT/J = 1) or kBT/J > 1.5 (Fig. 3d
for whichws = 0.5) the distribution curves generally display
the same pattern. The normalized deviation sharply increases
at early stages, goes through a peak, and then decreases as the
mean size increases. The initial increase may be attributed to
the small particles diminishing in size in order to feed the
growth of large particles. Eventually, these small particles
disappear completely, and at this stage the size-distribution
begins to narrow. However, the broad conclusions from these
simulations are that the narrowest size distributions occur in
dilute systems (Fig. 3a) and, at long times, further growth
by evaporation–condensation does not affect the normalized
distribution.

3.2. The effect of initial particle size-distribution on
growth

Having established the robustness of the computations
and investigated the effects of systematic variation of the
input parameters, we can explore the effect of the initial size-
distribution on grain growth.Fig. 4, like Fig. 1, shows snap-
s 200
M ion
u ri-
b .51
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M
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T size
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p

Fig. 5. A comparison of: (a) mean size as function of MCS for the same
initial mean size with different initial distributions contrasted with a random
distribution (inset). (b) Normalized deviation as a function of MCS for all
three cases in Fig. 4.

3.3. Distance-dependent grain growth

The results described in Sections3.1 and 3.2are derived
on the assumption that condensation may occur at any sur-
face site within the simulation grid and that the probability
of condensation does not depend on the distance from the
point of evaporation. This corresponds to a thermodynamic
analysis. By contrast, consideration of the transport process
suggests that condensation is more likely on sites that are
near to the point of evaporation. We now turn our attention
to this ‘distance-dependent’ grain growth.

We introduce a characteristic length (dL) within which
all evaporation–condensation steps, which lower the sur-
face energy are accepted. For values ofd > dL, a functional
dependence is introduced (simple cut-off, exponential de-
cay, Gaussian decay, inverse distance-dependence) whereby
evaporation–condensation steps which would automatically
lower the energy are only accepted on comparison of the
hots of grain growth at different times (0, 10, 50 and
CS). However, instead of the random initial distribut
sed inFig. 1 the effect of the breadth of the initial dist
ution is demonstrated for a fixed initial mean size of 4
nd an occupancy of 20%. Case (a) corresponds to mon
erse 8× 8 particles, the number of particles being equa
.3125% of the total number of cells. Case (b) corresp

o equal numbers (0.1% each) of 10× 10, 8× 8 and 6× 6,
hilst case (c) corresponds to 0.15% each of 10× 10 and
× 6.
Fig. 5shows the corresponding variations of (a)〈R〉 with

CS and (b) normalized deviation with MCS.
Fig. 5a shows that the initial growth of the monod

erse particles is small. Any change from monodispe
ust lead to an increase in surface energy and onl

BT/J > 0 can growth occur. A comparison, atkBT/J = 1, of
he growth of an initial random distribution with that fro
fixed size-distribution shows that grain growth is impa
ntil a random distribution has been generated. This t
irrors experimental findings that a narrow initial part

ize-distribution substantially slows coarsening rates in
arly stages of Ostwald ripening.34 However, the rate o
rowth of all three of our artificial populations converges

er about 150 MCS as do theδ/〈R〉 versus〈R〉 plots (Fig. 5b).
hese simulations suggest that growth of different initial
istributions by evaporation–condensation will lead to

icles with a similar distribution. Evaporation–condensa
s predicted to eliminate the differences in size-distribu
etween an initially random and an initially uniform parti
opulation.
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value of this function with a random number. This allows us
to investigate the distance-dependence of the acceptance of
evaporation–condensation steps which lower the surface en-
ergy. Although we have investigated the effects of a number
of functions as noted above, we will concentrate here on the
Gaussian decay function

g(dL) = e−((d−dL)/dL)2 (11)

for d ≥ dL and g(dL) = 1 for d < dL.
This ensures that both the function and its first derivative

are continuous atd = dL. It turns out in practice that the vari-
ous functions yield very similar results and we will only quote
results using the above Gaussian function (Fig. 6).

The ‘snapshots’ (a) to (c) inFig. 7 at t = 200 MCS (all
for f = 40%, wf = 1, ws = 0.5) demonstrate that decreasing
the diffusion-related characteristic distancedL(f = dmax/m)
(i.e. by increasingm) decreases the rate of particle-growth.
Correspondingly, the snapshots inFig. 7d–f, show that
increasing times (50, 82 and 153 MCS respectively), are
necessary to reach a fixed mean size as the diffusion distance
decreases. Conceptually, limiting the distance through which
‘monomer’ can be transported must decrease the chance
of a successful evaporation–condensation step. When the
transport distance is very small in comparison with mean

Fig. 6. The variation with distance,d, of various functions used in the cal-
culation of the distance-dependent probability of a move.

inter-particle distance, intra-particle transport will dominate.
High energy surface cells will move to a lower energy
location on the same particle, i.e. transport will lead to
changes in shape rather than size.

The particle-growth curves are plotted inFig. 8a. It can
be seen that shorter characteristic distances (larger values
Fig. 7. Snapshots at 200 MCS (a)–(c), and fixed mean size (d)–(f) for d
ifferent characteristic distances for a case off = 40,ws = 0.5 andkBT/J = 1.0.
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Fig. 8. The effect of decreasing characteristic distance, increasingm, on
particle-growth (f = 10%,ws = 0.5 andkBT/J = 1.0 in all cases). (a) Mean
size as a function of MCS and (b) normalized deviation as a function of
MCs, plotted on a logarithmic scale.

of m) significantly slow the earlier stage of particle-growth.
However, for longer times a power-law with exponent 2.0
still holds. This is because at an early stage, when more
small grains exist, the majority of moves are energetically
favourable, and consequently many energetically-successful
moves are rejected by the diffusion limitation; the diffusion
restrictions dominate. By contrast, at longer times there
are fewer small particles and fewer moves are successful
energetically. Consequently, the relative importance of
diffusion limitation decreases and the power-law behaviour
is re-established.

The corresponding plots of normalized deviation versus
with MCS are shown inFig. 8b. The normalized deviations
first go through a maximum, shifting to longer times asdL de-
creases. The peak heights are identical for different diffusion
distances because similar initial conditions were employed.

Fig. 9shows normalized deviation as a function of mean
sizes for different diffusion distances andf = 10%.

Fig. 9. Normalized deviation as a function of mean size for the same con-
ditions as Fig. 8.

Remarkably, a universal curve was obtained regardless of
the diffusion distances. Therefore, these results suggest that
the normalized deviation is independent of particle concen-
tration density in the simulation domain. Similar behaviour,
not shown here, was observed for a higher occupancy of 40%.
Similar universal curves were obtained for the other functions
shown onFig. 6.

4. Conclusions

As stated in the introduction, evaporation–condensation
is one mechanism, which can contribute to the growth of
particles and may be an important contribution to particle-
growth in the later stages of gas-phase powder production.
In these processes, not only the rates of particle-growth,
but also the size-distribution, which develops, are important.
For example, the opacity of TiO2 pigment and the fracture
of oxide ceramics are both affected by the size-distribution
of the powders. Therefore, the key conclusions from this
study concern the insights with respect to the contribution
of evaporation–condensation to the evolution of the size-
distribution.

The simulations lead to two such insights. The first is
that for growth by evaporation–condensation the ultimate
v dent
o ec-
o not
d cause
e hich
p the
s ed to
t le for
p ith
m odel
o

alue of normalised size-distribution may be indepen
f the initial size-distribution of the particles. The s
nd is that the normalised deviation distribution does
epend on the characteristic distance. However, be
vaporation–condensation is only one mechanism by w
articles can grow, our simulation may only tell part of
tory. This model is the first stage in a programme design
ake into account the main mechanistic steps responsib
article-growth and will, in future work, be combined w
odels of other processes—specifically a multi-state m
f growth by boundary diffusion.
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